- 国:
Cambodia
- 日付: 2016-08-25
We are very glad to have you joining this competition. From the bottom our heart, this means a lot to our hard working these days to bring the best customer service in the world. As you know, this competition cannot happen without our sponsors, they are the people behind who - along with you - are supporting CAR FROM JAPAN. In exchange, you, the winner candidate will be the representative for our sponsors and our brand. So that we would like to have you sending us an message. And we will read every single word carefully, to make sure you are the right one.
All the bests and good luck,
Yours, LanEXERCICE 1 5points 1. a. On a|zA|2=1+3=4=2. Donc|zA|=2. On factorise 2 : zA=2Ã1 2+i p3 2 !=2¡cos π 3 +isin π 3¢. Un argument de zA est donc égal à π 3 . b. zA=2¡cos π 3 +isin π 3¢=2ei Π 3 . c. Le point A est le point d’ordonnée positive commun au cercle unitaire et à la droite x= 1 2. 2. a. La rotation étant de centre O, on a zB =ei π 3 zA=eiπ 3 ×2ei π 3 =2e2i π 3 . b. On a donc zB =2Ã−1 2+i p3 2 !=−1+ip3. c. Le point B est le symétrique de A autour de Oy. 3. Par définition de la rotation OA = OB, le triangle est isocèle et AOB= π 3. On en déduit que ses trois angles ont la même mesure : il est donc équilatéral. 4. a. Le point C est l’image de A dans la rotation de centre O et d’angle π 4. b. Cf. figure c. zC=2ei π 3 ×ei π 4 =2ei7π 12 =2¡cos 7π 12 +isin 7π 12¢=2cos 7π 12 +2isin 7π 12. d. zC=zAei π 4 =zA¡cos π 4 +isin π 4¢=zA³p2 2 +i p2 2 ´. CommezA =1+ip3, zC=¡1+ip3¢³p2 2 +i p2 2 ´=p2 2 − p6 2 +iÃp2 2 + p6 2 != p2−p6 2 +i p2+p6 2 . e. Comme zC =2cos 7π 12 +2isin 7π 12, on en déduit par identification des parties réelles et imaginaires que :
cos
7π 12 =
p2−p6 4
et sin
7π 12 =
p2+p6 4
.
A. P. M. E. P. Corrigé du baccalauréat STI Génie électronique, électrotechnique, optique
bb
b
→− u
→− v
O
A
B
C
EXERCICE 2 5points
I.Premièrestratégie: 1. (B, B, B), (B, B, C), (B, C, B), (B, C, C), (C, B, B), (C, B, C), (C, C, B), (C, C, C ) soit huit triplets 2. p(B, B, B)= 1 8 =0,125. 3. On considère les réponses où il n’y a qu’une seule fois la lettre C : il y a trois
triplets, donc la probabilité est égale à
3 8 =0,375. 4. a. Avec trois bonnes réponses : X=6; Avec deux bonnes réponses : X=3; Avec une bonne réponse : X=0; Avec zéro bonne réponse : X=−3 ramenée à 0; b. Ilresteà calculer la probabilitéd’avoir une seule bonneréponse ouzéro; il y a trois triplets contenant une seule fois B ou zéro B. Donc p(X=0= 3 8 =0,375. Ona doncpar complément à1: p(X=−3)=1−(0,125+0,375) =1−0,5= 0,5. On a donc le tableau suivant :
xi 6 3 0 p(X=xi) 0,125 0,375 0,5 c. E(X) = 6×0,125+3×0,375+0×0,5=1,875. Conclusion : un candidat qui répond à toutes les questions au hasard aura un peu moins de 2 points sur un maximum de 6. II.Deuxièmestratégie: 1. On trouve les quatre triplets (A, B, B), (A, B, C), (A, C, B), (A, C, C) 2. a. Les valeurs de Y sont respectivement : 4, 2, 2, 0
France 2 23 juin 2009
A. P. M. E. P. Corrigé du baccalauréat STI Génie électronique, électrotechnique, optique
b. On obtient facilement le tableau :
yi 4 1 0 p¡Y=yi¢ 0,25 0,5 0,25 c. E(Y)=4×0,25+1×0,5=1,5. III.Comparaisondesstratégies: La première stratégie est meilleure que la seconde.
PROBLÈME 10points
PartieA:Étuded’unefonctionauxiliaire
- g est une somme de fonctions dérivables sur R; elle est donc dérivable sur R et : g′(x)=2ex +2=2(ex +1) qui est du signe de ex+1. Or quel que soit x∈R, ex+1 > 1>0. La dérivée est positive, donc g est croissante sur R. Les limites ne sont pas demandées. 2. a. On a g(−2)=2ex−2−4+3≈−0,7 et g(−1)=2e−1−2+3≈1,7. D’après le théorème des valeurs intermédiaires il en résulte que la fonction g croissantes’annule unefoissur l’intervalle [−2; −1]pour α telque g(α)=0 et−2<α<−1. b. Commepourlaquestionprécédente,comme g(−1,69) ≈−0,011etg(−1,68)≈ 0,013, on en déduit que α≈−1,7 au dixième près. c. On a donc : – sur ]−∞; α[, g(x)<0; – g(α)=0; – sur ]α ; +∞[, g(x)>0. PartieB:Étudedelafonction f
- On sait que lim x→+∞
ex =+∞et lim x→+∞
x2 =+∞, donc lim x→+∞
f (x)=+∞. - lim x→−∞
ex =0 et lim x→−∞
x2=+∞, on en déduit que lim x→−∞
f (x)=+∞. - a. f (x)−¡x2+3x¢=2ex, donc lim x→−∞ f (x)−¡x2+3x¢=0.b. Onen déduitqu’au voisinage demoins l’infini la courbe C et la parabole sont asymptotes. c. On a vu que f (x)−¡x2+3x¢=2ex et comme 2ex >0, que que soit le réel x, on en déduit que la courbe C est au dessus se la parabole. 4. a. f somme defonctions dérivables sur R est dérivableet f ′(x)=2ex+2x+ 3=g(x). b. le signe de f ′ est celui de g vu à la question 2.c.. D’où : – sur ]−∞; α[, f ′(x)<0; f est décroissante; – f ′(α)=0; α est un extremum de f ; – sur ]α ; +∞[, f ′(x)>0; f est croissante. c. On a f (−1.69)≈−1,844860 et f (−1,68)≈−1,844852. Donc (α)≈−1,7 à 10−1 près. 5. M(x ; y)∈T ⇐⇒ y−f (0)= f ′(0)(x−0 ⇐⇒ y−2=5x ⇐⇒ y =5x+2. 6.
France 3 23 juin 2009
A. P. M. E. P. Corrigé du baccalauréat STI Génie électronique, électrotechnique, optique
PartieC:Calculd’aire - Cf. figure. 2. a. Comme f (0)=2>0 et que f est croissante sur·0 ; 1 2¸, il en résulte que f est positive sur cete intervalle. L’aire de la partie hachurée est donc égale à l’intégrale A =Z1 2 0 f (x)dx. b. On a donc A =Z1 2 0 ¡2ex+x2+3x¢dx =·2ex + x3 3 + 3x2 2 ¸1 2 0 =2e 1 2 + 1 24 + 3 8 −2=2e 1 2 − 38 24 =2e 1 2 − 19 12 . (en unités d’aire) L’unité graphique étant de 2cm, l’unité d’aire est égale à 4 cm2. Donc en cm2, A = 4µ2e1 2 − 19 12¶≈6,856. Au centième près de cm2, A ≈6,86
提供元

- CAR FROM JAPAN CO., LTD.
- Toujiki Building 7F, 3-10-7 Iwamotocho, Chiyoda,
- Tokyo, JAPAN 101-0032
- +81 50 5578 0494
- 03 6735 4633
- www.carfromjapan.com
- ask@carfromjapan.com
営業時間
- 月曜日から金曜日: 9am-6pm
- 休日: 土曜日と日曜日および日本の祝祭日
CAR FROM JAPANに関しまして
CAR FROM JAPANは「株式会社Car From Japan」の商品です。
直接かつ簡単にアクセスできる、他社の追随を許さぬ価格の数千の日本の中古車を提供します。
We are entrusted by hundreds of major Japanese used car exporters across Japan with an unmatched portfolio of cars at bargain prices. We will take care of all the paperwork for you, make sure that your payment is safe, and you get what you pay for, in perfect conditions.
支払い保障.追加料金一切なし。安心安全。
私たちはセラーの為ではなく、あなた - バイヤー - の為に働いています。私たちは出荷された後にのみ、売り手に代金を支払います。私たちはあなたの車があなたに安全かつ迅速に送付されることを確実にするために尽力します。万が一、車両があなたへ発送されない場合は、100%返金を保証します。
まるで地元でビジネスをしているような気分にすることができるグローバルチーム。
CAR FROM JAPANは 多文化のチームを誇りに思います。私たちは異なるタイムゾーンへ住み、異なる言語を話すことができます。私たちとの意思疎通において問題を抱えることはないでしょう - 常にあなたの言語を話す人間がいます。 そしてあなたの近くのどこかに住んでいます!
すべてのメーカー、モデル、価格帯。そのすべてを網羅しています。
私たちはインターネット上で見つけることができる中で最大級の中古車の集積です。そして、日々積極的にポートフォリオを拡大して、より大きくて早く成長させていきます。すべてが他社の追随を許さない価格です。ああ、そうさ、掲載ページに行き、その目で確かめよう。